Autonomous Vision-Based Target Tracking

Kavin Ravie
kravie @andrew.cmu.edu
Carnegie Mellon University

Abstract— This study introduces a system enabling a robotic
manipulator, specifically a 7 DOF Franka Emika robot, to
interact with dynamically moving objects displayed on a screen.
The objects, Aruco markers, are tracked by an Intel Realsense
RGBD camera mounted on the arm. Visual tracking control is
achieved by aligning the axes of the marker pose with the robot
pose. We utilize the Frankapy library, developed by IAM-Lab
[1], to publish ROS messages for position control. Additionally,
a verification system comprising a monocular camera employs
classical computer vision approaches to determine if the object
has been engaged by the robot. The verification node operates
asynchronously, facilitating a closed-loop system. The proposed
system is assessed in real-world scenarios, where a display
screen with randomly moving Aruco markers is placed in
front of the robot arm using a Pygame simulator. The sys-
tem’s performance was evaluated with five markers, achieving
successful engagement with the objects 80% of the time, as
verified by the verification system. The system is capable
of handling multiple targets within the robot’s workspace,
presenting a solution for tracking and sequentially engaging
with dynamically moving objects on a screen. Following is the
github link to our repository AVTT,

I. INTRODUCTION

Vision-based tracking of dynamic objects has found
diverse applications in robotic systems such as Unmanned
Aircraft Systems (UASs), Autonomous Mobile Robots
(AMRs), and Mobile Manipulators. Vision serves as a
primary perception source in many of these applications
due to the small form factor of cameras, lightweight
construction, and high image resolution. Target tracking has
been extensively applied across industries, ranging from
UAVs tracking moving objects [2] to robotic manipulators
predicting the trajectory of objects in space and attempting
to catch or hit them [3]. Moreover, researchers have explored
applications in medical robotics, where manipulators assist
in surgeries, necessitating visual servoing methods for
precise operation at specific locations [4].

Our work introduces the use of a manipulator to track
and engage randomly moving objects in its vicinity. The
aim is to showcase the enhanced tracking capabilities of
dexterous manipulators through visuo-motor control. We
have utilized a laser to illustrate the ability of an n-DOF
arm to precisely engage with desired objects by orienting
itself accordingly. This study can serve as a benchmark
for applications requiring such precise tracking to execute
desired actions. Furthermore, this application can be
extended to manipulators used in manufacturing industries,
such as the vehicle manufacturing industry, where they are

Naman Menezes
nmenezes @andrew.cmu.edu
Carnegie Mellon University

Saudamini Ghatge
sghatge @andrew.cmu.edu
Carnegie Mellon University

employed to assemble parts or apply paint, necessitating
precise tracking of goal locations.

Depth Camera

-

Target Screen

Validation Camera

Fig. 1. Vision of our System Implementation

We have developed a rudimentary target-tracking system
that showcases the capabilities of a 7-DOF arm to precisely
track fast-moving targets using feedback from an RGBD
camera mounted on its hand. We explored various methods
for generating continuous motion of the arm using the
Frankapy library [1].

Additionally, we are incorporating a secondary camera sys-
tem to ensure accurate engagement with objects and to
avoid false triggers Fig|l] Our experiments involved multiple
targets at varying speeds, achieving an overall accuracy of
80%. Once all targets are hit, the arm returns to its home
position and awaits new targets to spawn on the screen. Our
contributions to this project can be summarized as follows:

1) Integration of the Frankapy library developed by IAM-
Lab for robot position control

2) Development of a GUI that spawns Aruco markers
randomly moving on the screen

3) Integration of a secondary monocular camera to verify
whether targets have been hit or not

https://github.com/Autonomy-S24-1A/avtt_target_client

II. RELEVANT WORK

After conducting an extensive literature survey, we found
no direct applications of our work. However, there has
been extensive research in the field of object tracking using
camera feeds. Our work can be easily extended to track
random objects instead of aruco markers. Various vision-
based tracking methodologies exist, ranging from classi-
cal computer vision approaches to learning-based methods.
One such implementation using classical computer vision
techniques is presented in [5] which employs a resilient
feature detection strategy for tracking. This work has been
extended to unmanned aerial system (UAS) applications.
Another relevant study, [6] is similar to our proposal, with the
distinction that the manipulator also aims to grasp the object.
This work focuses on aligning a dynamic target frame to the
onboard gripper using visual servoing. However, unlike our
system, they have prior knowledge of the target pose.

III. METHODOLOGY

Client PC Franka PC

ROS

Vision
RealSense Node

RGB Image

Aruco Detection
Node

ROS Marker TFs

Custom Verification Service

External Display

Marker Visualization

Target Manager GUI Tracking Controller

PosePosition

Franka Interface

Parameter Server

Verification Image

USB Webcam

Fig. 2. System Architecture

To efficiently track targets and evaluate performance qual-
ity, we implemented two subsystems for target tracking and
verification, along with a Pygame simulator to simulate
moving objects in a virtual environment. Our workspace
consists of the following: a) A monitor placed at a distance of
_ meters from the base of the robot arm. b) The arm’s home
position is configured to point towards the screen, ensuring
that the end-effector housing the laser points directly at the
screen. c) A secondary verification camera placed on the
side table, facing towards the screen. Refer to Fig [3| for the
complete system setup and Fig 2| for our system architecture.

A. Graphical User Interface

We have developed a Python Pygame simulator capable
of spawning Aruco Markers generated from the Original
ArUco marker dictionary. These markers are spawned at

RGBD Camera

GUI

Fig. 3.

System Setup

random locations and move in random directions. Addition-
ally, we have included functionality to adjust Aruco marker
parameters such as size, velocity, and number of markers.
This system receives input from the target tracking node and
places the nearest marker to the current arm position on top
of all other markers. In summary, the robot arm locates the
nearest marker to its current position and tracks it. When
the end-effector pose aligns with the marker pose, the target
tracking node sends a flag to the Pygame simulator, which
blanks out the screen and highlights only the active marker
being tracked by the robot arm Fig [d|

Fig. 4. GUI

B. Target Detection

We employ the ROS aruco_detect package to detect all
the visible images from ARUCO_ORIGINAL dictionary of
markers. The Marker sizes were set to 0.07m to emulate
long-range scenarios. The image feed from the RGB camera
of the RealSense camera (hand-eye calibrated) was passed
to the detection package.

The detection package detects all visible markers in the
scene belonging to the pre-defined dictionary and publishes
their pose on the ROS TF server.

http://wiki.ros.org/aruco_detect

C. Target Tracking

This is the key contribution of work which is the develop-
ment of a visual-servoing controller. Due to the limitations
posed by the FrankaPy library, which limited us from directly
commanding joint torques, the prior controller strategy which
we had validated in MuJoCo simulation [7] and showcased
in our Mid-term evaluation Presentation could not be used.
Instead, we had to rely on the trajectory interface provided
by Franka-Interface using which we published Pose-Position
commands in the task space.

The Algortihm:

1) Get all the latest marker poses from the TF server (we
use an async loop for this lookup at 100Hz)
2) Controller Loop (async @ 100Hz)

a) Select the optimal target (if not already selected)
based on Euclidean distance metric

b) Track this object until engaged

c) Call verification service provided by the manager
for external validation when we are sufficiently
close to the target position

d) Continue tracking the same ID if validation was
unsuccessful or else re-select the optimal target
and remove the engaged target from our active
list.

e) Repeat all the above steps until we have en-
gaged all the targets (defined by the /tar-
get_manager/num_targets ROS parameter pro-
vided by the target manager)

For tracking the target we manually align the
TV/Display to be planar to the XZ plane. This enables
us to define a virtual offset target on the XY plane
centred at the base of the manipulator. So any and all
motion would be confined to this plane and ideally,
there should not be any motion in the Y-direction (for
safety).

We keep the orientation of the EEF fixed as with
complete 6DOF control, we faced issues with the
manipulator taking aggressive and risky motions.

IV. EVALUATION

To evaluate our system, we tested it by spawning 5 targets
on the screen. We used a Red color Laser to engage with the
virtual objects. Since we are also integrating a verification
system to verify whether the target was engaged or not, we
could accurately verify the working of our system. Overall
our system was able to track and verify object engagement
80% of the time successfully. Since our reset condition is
defined as restarting the target manager and the controller
nodes, which means generating new targets at any random
position, the arm successfully performs the whole operation.

From the plot above we can note the good tracking per-
formance achieved by our system. With joint torque control
strategies, this error can be further reduced as we would be
using the most optimal joint state changes using the jacobian.

This leads us to a major limitation of our present im-
plementation which arises from the fact the EEF has to

X Position

0.6 7 —— Target 30
Robot
—— Target 31
.4 4 — Robot
—— Target 32
03—+ . — Robot
02l — Target 33
g I — I —— Robot
2¥%position 300 400

— Target 30
—0.161 Robot
—— Target 31

— Robot
— Target32
— Robot
Target 33
—0.22 +—j : : —— Robot
2Q0Position 300 e

— Target 30

Robot
— Target 31
—— Robot
— Target 32
— Robot

Target 33
| | —— Robot
200 Error 300 400

0.20 1 — Target 30

Target 31
—— Target 32
—— Target 33

Fig. 5.

Position Error

traverse the same distance as the target due to the pure
position control approach. Using Orientation should remove
this drawback as now the robot could simply change the ori-
entation of the EEF to make the EEF-Z/Laser axis intersect
with the target.

V. CHALLENGES

There were many challenges faced during this project, the
most significant ones are listed below:

1) Absence of Torque Control: While the frankapy API
has extensive coverage of different control mecha-
nisms, there was a significant challenge encountered
when the torque control was not available for the
franka arm. Our initial proposal aimed to use torque
control of the joints to quickly reposition the end
effector of the arm. To overcome this problem the
franka python API was replaced with a ROS message
based controller in order to implement position control
of the arm. This allowed for much smoother dynamic
motion compared to the Franka gotoPose functions. By
adjusting the stiffness.

2) Full Pose Control: Commanding full-6DOF poses to
the manipulator using the trajectory interface led to
the issues mentioned in the previous sections. Having
orientation control would greatly reduce the time to
intercept each target.

3) Distributed Systems Integration: The software ar-
chitecture was the most complicated part of our whole
project. These were:

o Generating metric-accurate Aruco markers on a
digital display.

o Multi-threading-related issues stemming from our
parallelized software architecture

o Syncing the Manager and the Controller states
using minimal data flow.

VI. FUTURE WORK

The system exceeded the functional requirements that
were set up for it. There are a few possible directions
in which future work can improve the system. Firstly, the
system does not implement a good way to do orientation
tracking especially in the general case, there is an offset
that is caused by the position of the laser which may not
always be aligned to the end effector position. In order to
overcome this variability, it is possible to create a calibration
sequence that estimates the end effector position. Another
possible direction of future work is to implement position
control on the laser position, currently no feedback of the
laser position is used in the pipeline of positioning the arm,
this was done as the time that the laser was being ’fired’ was
minimized. However, in an ideal case, the few frames that
the laser is visible should be used to correct minor errors in
the end effector position to improve the accuracy of the arm.

VII. CONCLUSION

This report demonstrates a methodology to autonomously
track and engage multiple moving targets with a laser
mounted on a Franka Emika arm. A robust methodolgy
is used to switch between appropriate targets and a novel
verification system is proposed to ensure proper engagement
of the targets. We demonstrate the ability of successfully
tracking and engaging five unique targets moving with
unique velocities in distinct directions. We open source our
code to run smooth detection and tracking of the targets
and also the target manager GUI which can be used to
evaluate the performance of the system. We hope that our
work will be useful for anyone doing visuo-motor control
using a manipulator.

VIII. ACKNOWLEDGEMENTS

The authors would like to express their immense gratitude
to Prof. Oliver Kroemer for his guidance with the project.
Additionally we are grateful to our TA’s Abhinav Gupta and
Vibhakar Mohta for their help in implementing our project.
Finally, we would like to acknowledge our fellow MRSD
students for all the help extended to us.

REFERENCES

[1] https://github.com/iamlab-cmu/frankapy

[2] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision
for uvavs: Current developments and trends,” Journal of Intelligent &
Robotic Systems, vol. 87, no. 1, pp. 141-168, 2017.

[3] S. -T. Kao, Y. Wang and M. -T. Ho, "Ball catching with omni-
directional wheeled mobile robot and active stereo vision,” 2017 IEEE
26th International Symposium on Industrial Electronics (ISIE), Edin-
burgh, UK, 2017, pp. 1073-1080, doi: 10.1109/ISIE.2017.8001395.
keywords: Cameras;Mobile robots;Trajectory;Projectiles;Stereo vi-
sion;Visualization; Visual Servoing;Wheeled Robots;Visual Tracking

[4] https://mrsdprojects.ri.cmu.edu/2024teame/

[5] P. Karmokar, K. Dhal, W. J. Beksi and A. Chakravarthy, "’Vision-Based
Guidance for Tracking Dynamic Objects,” 2021 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2021,
pp. 1106-1115, doi: 10.1109/ICUASS51884.2021.9476712. keywords:
Atmospheric modeling;Cameras;Aircraft;Open source software,

[6] Arora, P., Papachristos, C. (2020). Mobile Manipulator Robot Vi-
sual Servoing and Guidance for Dynamic Target Grasping. In: Be-
bis, G., et al. Advances in Visual Computing. ISVC 2020. Lec-
ture Notes in Computer Science(), vol 12510. Springer, Cham.
https://doi.org/10.1007/978-3-030-64559-5_17

[7] https://mujoco.readthedocs.io/en/stable/overview.html

	INTRODUCTION
	RELEVANT WORK
	METHODOLOGY
	Graphical User Interface
	Target Detection
	Target Tracking

	EVALUATION
	CHALLENGES
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	References

