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Abstract—When navigating in dynamic traffic environments,
autonomous vehicles face fundamental challenges such as lane
changing and merging maneuvers. This work aims to develop a
model and control structure for autonomously merging a vehicle
into traffic lanes where certain speed and spacing characteristics
or constraints are assumed. The approach involves generating
a simple model of the system dynamics, including simplified
vehicle dynamics, and utilizing model predictive control MPC)
techniques to provide control effort that allows for lane changing
under quantifiable constraints. As part of our methodology, we
developed a sophisticated nonlinear system dynamics model and
formulated an optimization problem that incorporates strict con-
straints to ensure safety and efficiency of these maneuvers. Based
on simulation results, we demonstrate the application of MPC
for such problem statement. The code for our implementation
can be found here.

I. INTRODUCTION

Autonomous vehicles represent a transformative technology
poised to revolutionize transportation systems by offering
safer, more efficient, and intelligent mobility solutions. It is
crucial for autonomous vehicles to be able to perform complex
maneuvers, such as lane changes and merges, seamlessly in
dynamic traffic environments. These maneuvers demand not
only efficient trajectory planning but also robust decision-
making to ensure passenger safety and traffic efficiency.

In traffic scenarios that involve lane changes and merg-
ing maneuvers, autonomous vehicles face unique challenges
caused by the dynamic nature of traffic, in which other vehicles
exhibit varying behaviors and trajectories. Traditionally, trajec-
tory planning has struggled to address these challenges, par-
ticularly in scenarios with multiple unknown or unpredictable
agents.

In this context, Model Predictive Control (MPC) emerges
as a promising methodology for optimizing vehicle maneuvers
by leveraging predictive models and dynamic optimization
techniques. The core principle of MPC involves formulating
an optimization problem that predicts future system behavior
over a finite time horizon and generates control actions to
optimize a specified objective function while adhering to
system constraints.

This paper introduces a novel application of MPC tailored
specifically for optimizing vehicle lane change and merge
behaviors in dynamic traffic scenarios as shown in Fig: 1 Fig:
2. Our approach addresses the following key aspects:

1) System Dynamics Modeling: We develop a sophisti-
cated nonlinear system dynamics model that accurately

represents the vehicle’s behavior during lane change
and merge maneuvers. This model accounts for critical
factors such as vehicle dynamics, control inputs, and
environmental conditions.

2) Trajectory Optimization Problem: We formulate a trajec-
tory optimization problem within an MPC framework
to generate optimal control actions that facilitate safe
and efficient lane changes and merges. Our formulation
incorporates stringent constraints to ensure collision
avoidance and adherence to traffic regulations.

3) Integration of MPC Frameworks: We review and analyze
various MPC frameworks and game-theoretic methods
proposed in recent literature to address similar chal-
lenges.

4) Simulation and Validation: Through extensive simula-
tion studies, we demonstrate the efficacy of our MPC-
based approach in achieving seamless and collision-
free lane changes amidst complex multi-agent traffic
scenarios. Simulation results validate the effectiveness
of our methodology under diverse traffic conditions and
interaction scenarios.

The contributions of this work lie in the development of
a practical and effective MPC-based strategy for optimiz-
ing autonomous vehicle lane change and merge behaviors.
By integrating sophisticated system modeling, optimization
techniques, and insights from recent research, our approach
represents a significant step towards enhancing the autonomy
and safety of next-generation vehicles in dynamic traffic
environments.

The remainder of this paper is organized as follows: Section
II provides a comprehensive review of related work in MPC
for vehicle interaction scenarios, highlighting key modeling
and optimization techniques. In Section III, we detail our
methodology, including problem formulation, system dynam-
ics modeling, and constraint definition. Section IV presents
simulation results and performance evaluation of our approach,
followed by conclusions and directions for future research in
Section V.

II. RELATED WORKS

A. Different Model Predictive Frameworks

Literature has many variations of applying MPC to this
problem of interaction of ego vehicle with other agents. Yuxiao

https://github.com/shara-cell/OCRL_Project/tree/main/OCRL_Project


Fig. 1. Merging in highway

Fig. 2. Changing Lanes

Chen et al., propose a branch Model Predictive Framework [4]
which plans over feedback policies to leverage the reactive be-
haviour of the unknown agent. Typical algorithms first design
a predictive model and then the motion planning algorithm
plans the motions in a way that the autonomous agent avoids
the reachable set of the unknown agent [5]. But this leads to
conservative motion plans because the motion planner ignores
the reactive nature of the unknown agent within the prediction
horizon, which basically assumes a fixed reactive behaviour
of the unknown agent. This is not ideal since the behaviour
is nondeterministic and the planner needs to account for this
uncertain behaviour. Their proposed solution combines the
continuous motion planning with the discrete modes which
represent the unpredictable behaviour of the unknown agent.
This algorithm claims to capture the uncertain behaviour of the
uncontrolled agent and plan appropriate trajectories. Although
this algorithm does not perform well if the number of unknown
agents are increased.

Lixing Huang et al. [6], proposed a receding horizon control
which parameterized the system trajectory with the control
input and employs a nonlinear model on the ego vehicle
dynamics. To model the uncertain behaviour of the unknown
agent, they proposed a probabilistic model along with a

collision avoidance model. But their method assumes that the
ego vehicle always follows a reference center line and does
not consider vehicles which are not in the sensing range of
the ego vehicle.

B. Game Theoretic Methods

David Fridovich-Keil et al. [7], proposes a Differential
Game setting for solving the problem of multiple agents
interacting with each other. But since most numerical solution
techniques are not suitable for real-time applications when the
state dimensions are increased, and its a common practice to
predict the future actions of other agents and solve the decou-
pled optimal control problem for each agent. They propose to
use Iterative Linear Quadratic Regulator (ILQR), which solves
repeated convex function approximations. Based on a Monte
Carlo study, their solution demonstrated the ability of the
algorithm to identify complex interactive strategies for multi
agent interaction. However they fail to provide convergence
guarantee if arbitrary initial conditions are set.

Another work similar to above paper, in terms of solving the
problem of interacting with multiple agents was proposed by
Simon Le Cleac’h et al. [8]. The difference lies in the method
to solve the optimisation problem. The algorithm makes use of
Augmented Lagrangian method to enforce constraints. Based
on a Monte Carlo Analysis, the algorithm shows the ability to
solve the optimization problem on nonlinear and non-convex
constraints.

III. METHODOLOGY

A. Problem Formulation

We are solving a discretized trajectory-optimization problem
with N time steps. The problem is characterized by nonlinear
system dynamics where the side-slip parameter of the vehicle
represents the non-linearity.
We model the dynamics of the car with a simple nonlinear
bicycle model [2], with the following states and controls -

x =


px
py
θ
δ
v

 , u =

[
a

δ̇

]
(1)

where, px, py are the 2D position of the vehicle, θ is the
orientation, δ is the steering angle and v is the velocity. The
control inputs are a which is the acceleration and δ which is
the rate of steering angle.
We define the non-linear continuous time model as -

ẋ = f(x, u) (2)

We will linearize the non-linear dynamics along a reference
trajectory and approximate the nonlinear system locally using
Taylor Series expansion. This linearization is justified by
assuming that while merging vehicles maintain a set velocity.
We will define a reference trajectory along which we will



linearize the system. Before linearizing, we will discretize the
system using the 4th order Runge-Kutta Method [1], where -

k1 = f(x, u)

k2 = f(x+ k1/2, u)

k3 = f(x+ k2/2, u)

k4 = f(x+ k3, u)

x = x+
1

6
∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4) (3)

The reference trajectory used for linearizing the system
is defined as the trajectory of the obstacle vehicle in the
second lane, which the ego vehicle needs to merge into, while
avoiding collisions with the obstacle vehicles. The ego vehicle
follows this reference center trajectory and follows all the
control bound constraints which lets the ego vehicle stay in
lane after merging into the target lane.

For our optimization problem, we are defining a Quadratic
cost function which penalized control inputs and the distance
between the current state and the desired state.

min
x1:N,u1:N−1

N−1∑
i=1

[
1

2
(xi − x̃ref,i)

TQ(xi − x̃ref,i) +
1

2
uT
i Rui

]
(4)

+
1

2
(xN − x̃ref,N )TQf (xN − x̃ref,N )

st x1 = xIC

xN = xg

xi+1 = Axi +Bui, for i = 1, 2, . . . , N − 1

[−1,−1] ≤ ui ≤ [1, 1], for i = 1, 2, . . . , N − 1

∥xego
i [1, 2]− xobs

i [1, 2]∥ ≥ 6 for i = 1, . . . , N

8 ≥ xego
i [2] ≥ −2.5 for i = 1, 2, . . . , N

xego
i [5] > xobs

i [5] for i = 1, 2, . . . , N

The constraints for our problem statement are defined as
follows -

1) Initial and Goal state condition constraints
2) Dynamics constraints
3) Control bounds constraints
4) Collision avoidance constraints
5) Staying in Lane constraints
6) Velocity constraints
1) Initial and Goal state condition constraints:

• The initial state x1 of the vehicle must match a
specified initial condition xIC.

• The final state xN of the vehicle must reach a
desired goal condition xg.

2) Dynamics Constraints:
• The state transition at each time step is governed by

a linear model that applies to the current state and
control input.

3) Control Bounds Constraints:

• The control inputs ui are constrained within
[−1,−1] and [1, 1], to ensure realistic and feasible
control actions.

4) Collision Avoidance Constraint:
• This constraint maintains a safe distance between

the ego vehicle and any obstacle vehicle to prevent
collisions. The minimum distance requirement is set
to be twice the length of the ego vehicle.

5) Lane Constraints:
• The lateral position (y-coordinate) of the ego ve-

hicle is restricted to stay within the defined lane
boundaries. This constraint ensures that the vehi-
cle performs lane changes or merges appropriately
without deviating from the intended path.

6) Velocity Constraint:
• The velocity of the ego vehicle must be maintained

at a level higher than that of any obstacle vehicle
encountered during the trajectory. This constraint
helps in that the ego vehicle will perform the lane
change motion and arrive at the desired end position
before the obstacle vehicle.

These constraints collectively define the boundaries and
conditions under which the trajectory optimization problem is
solved using Model Predictive Control (MPC). By integrating
these constraints, the optimization process aims to generate
safe and optimal control inputs for autonomous vehicle op-
erations in dynamic traffic environments. The cost function
associated with this optimization problem is quadratic, and the
constraints are linear, making the entire optimization problem
convex. Leveraging convex optimization enables efficient and
reliable computation of control inputs, ensuring that the au-
tonomous vehicle adheres to safety and performance require-
ments while navigating through complex traffic scenarios.

B. Model Predictive Control

Model Predictive Control (MPC) is an optimal control
strategy to select control inputs based on minimising some
objective function. One of the important key features of MPC
is its ability to handle constraints directly, including constraints
on the control inputs, outputs and internal states [3]. A convex
MPC controller sets up and solves a convex optimization
problem at each time step that incorporates the current state
estimates as an initial condition. MPC reasons about the next
N steps instead of the whole trajectory. This allows the model
to compensate for any changes in the model and accordingly
update its control strategy. MPC algorithm is as follows -

• Initialize the control position xIC
• Solve a trajectory optimization problem looking at the

next N steps
• Execute the first control u1 from this problem on the

system
• Repeat this whole process at the next time step

Thus, at each time t, given the state of the system x(t), the
action is determined by solving the following Finite Time
Optimal Control Problem (FTOCP):



min
u0,...,uN−1

N−1∑
k=0

h(xk, uk) + V (xN )

s.t. xk+1 = f(xk, uk), ∀k ∈ {0, . . . , N − 1},
xk ∈ X , uk ∈ U , ∀k ∈ {0, . . . , N − 1},
x0 = x(t),

xN ∈ XN , (5)

IV. RESULTS

We have simulated the optimization problem in julia, and
used Convex library to solve the optimization problem. We
simulated the solver for 20 seconds, with 100 time steps. We
have used the MeshCat library to animate and visualize the
lane changing motion.
For the purpose of this project, we have simulated the obstacle
vehicle with a constant velocity, without any acceleration.
The following are the results we have obtained by performing
convex trajectory optimization on our objective function and
constraints to generate the states and controls for the ego
vehicle for the following initial and final conditions:

xego
IC = [0, 4, 0, 0, 0]xego

g = [43, 2, 0, 0, 0]

xobs
IC = [0, 0, 0, 0, 0]xobs

g = [40, 0, 0, 0, 0]
(6)

Fig. 3. Trajectories of the ego and obstacle vehicles

The full video of the simulation can be found here.
As seen in figures 3, 4, 5, 6, 7, and 8, by using the controls
directly generated by the convex solver, the ego vehicle (red
car) can change lanes without colliding with the obstacle
vehicle (grey car) seamlessly, and while maintaining a higher
velocity than the obstacle vehicle.
The results we get on simulating the control variables from
convex trajectory optimization with a model predictive control
loop, for the same initial and final conditions of the ego and
obstacle vehicle, and an MPC sliding window of N mpc =
20, are shown in figures 9, and 10

As we can see from figures, 11, 12, 13, and 14, with
the same constraints and objective function as before,the ego

Fig. 4. Control Variables against time

Fig. 5. Snippets of the simulation

Fig. 6. Snippets of the simulation

vehicle has gained a lot more speed and is drifting forward.
One of the reasons this could be happening is due to the
iterative re-computation done in the MPC algorithm, which
means it continuously recalculates trajectories for different
horizons.
The full video of the implementation can be found here

https://drive.google.com/file/d/1faM6go3kkKJkLKQVMoVAhzf5aaaOSgtJ/view?usp=sharing
https://drive.google.com/file/d/1Xh5FRt2InL3U0KHszfTgUTGpOxxJHlat/view?usp=sharing


Fig. 7. Snippets of the simulation

Fig. 8. Snippets of the simulation

Fig. 9. Trajectories of the ego and obstacle vehicles using MPC

V. CONCLUSION

In this work, we have presented an application of Model
Predictive Control (MPC) tailored specifically for optimizing
autonomous vehicle lane change and merge maneuvers in dy-
namic traffic scenarios. Our approach leverages sophisticated
system dynamics modeling and constraint-based trajectory
optimization within an MPC framework to achieve safe and ef-
ficient vehicle behaviors. By formulating and solving a convex
optimization problem alone with MPC, we demonstrated how
MPC affects the behaviour of the system through extensive
simulation studies.

Fig. 10. Control Variables against time using MPC

Fig. 11. Snippets of the simulation for MPC

Fig. 12. Snippets of the simulation for MPC

The results indicate that without using MPC and generating
a single control strategy for the entire strategy, we were able
to perform seamless lane changes while adhering to stringent
safety and performance constraints. After implementing MPC,
our performance was affected. One of the reasons could be
because of defining less constraints.

In conclusion, our study underscores the potential of MPC
as a viable solution for optimizing autonomous vehicle maneu-
vers, paving the way for safer and more efficient transportation
systems in the era of intelligent mobility.



Fig. 13. Snippets of the simulation for MPC

Fig. 14. Snippets of the simulation for MPC

VI. FUTURE WORK

Based on our results, we can improve the performance of
MPC by introducing more constraints on the vehicle. Our
current implementation can control the ego vehicle to merge
into the second lane, but does not predict the behaviour of
the other vehicles. This could be an interesting avenue to
look into since in a real-world the behaviour of the other
vehicles cannot be known in advance, making the problem
more complex to solve. Researchers have implemented various
strategies to face this challenge which include using game
theory methods, a probabilistic model to predict the trajectories
of the obstacle vehicles, etc. Another possible direction of
future work is increasing the number of obstacle vehicles with
different behaviours.
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